Solve each problem.

- A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
- 2) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
- While exercising Mike walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?
- A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
- A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
- An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
- A dejuicer was able to squeeze a pint of juice from $\frac{1}{2}$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug?
- A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
- 10) It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?

Answers

1. _____

2.

3. _____

4. _____

5. _____

6.

7. _____

8.

9. _____

10. _____

Solve each problem.

- A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
- While exercising Mike walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?
- A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
- A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
- An old potato outputs $\frac{1}{2}$ of a volt of electricty, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
- A dejuicer was able to squeeze a pint of juice from $\frac{1}{2}$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug?
- A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
- 10) It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?

Answers

- $1^{1/2}$ seconds
- $_{2.}$ 1 $\frac{1}{2}$ hours
- 3 cans
- $1\frac{1}{2}$ miles
- 5. **3 bags**
- $1\frac{1}{2}$ hours
- 7. **3 potatoes**
- $1\frac{1}{2}$ bags
- 9. **3 containers**
- $1^{1/2}$ hours