Solve each problem.

1) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?
2) A water hose had filled up $\frac{1}{3}$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
3) A small can of paint was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
4) While exercising Mike walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
5) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
6) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
7) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
8) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
9) A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
10) It takes a baker $1 / 2$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?
2) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
3) A small can of paint was $1 / 2$ of a liter. That was enough to fill $1 / 3$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
4) While exercising Mike walked $1 / 2$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?
5) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
6) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
7) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
8) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
9) A container of gasoline that held $1 / 2$ of a liter could fill up $1 / 3$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
10) It takes a baker $1 / 2$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?

Answers

1. $1 / 2$ seconds
2. \qquad
3. \qquad
4.

$1 \frac{1}{2}$ miles
5. \qquad
$1 / 2$ hours
7. \qquad
8. \qquad
9. \qquad
$1 / 2$ hours
10. \qquad

