	Understanding Unit Rate Name:	
Solv	e each problem.	Answers
1)	A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough	
	brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?	1. 2.
2)	A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup?	3
3)	A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to	4
	finish $\frac{1}{3}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?	6
4)	A dejuicer was able to squeeze a pint of juice from $\frac{1}{2}$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug?	7
5)	A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?	8 9
6)	A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?	10
7)	An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?	
8)	A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?	
9)	Bianca was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $\frac{1}{3}$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?	
10)	A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?	

	Understanding Unit Rate Name:	Answer Key
Solv	e each problem.	<u>Answers</u>
1)	A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?	1. 3 bags 2. 3 baskets
2)	A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup?	2. 3 baskets 3. $\frac{1^{1}}{2}$ boxes 4 $\frac{1^{1}}{2}$ bags
3)	A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{3}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?	4. $1/_{2}$ bags 5. $1/_{2}$ minutes 6. $1/_{2}$ hours
4)	A dejuicer was able to squeeze a pint of juice from $\frac{1}{2}$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug?	o. 2 7. 3 potatoes 8. 3 containers
5)	A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?	9. 3 containers
6)	A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?	10. <u>1¹/₂ hours</u>
7)	An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?	
8)	A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?	
9)	Bianca was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $\frac{1}{3}$ of the fishbowl. At this rate, how many containers will it take	

10) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?

to fill the fishbowl?