Solve each problem.

1) While exercising Adam walked $\frac{1}{2}$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
2) A chef used $1 / 2$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
3) Rachel spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) A container of gasoline that held $1 / 2$ of a liter could fill up $1 / 3$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
5) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
6) A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
7) Lana was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
8) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
9) A dejuicer was able to squeeze a pint of juice from $1 / 2 \mathrm{bag}$ of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
10) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) While exercising Adam walked $\frac{1}{2}$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
2) A chef used $1 / 2$ of a bag of potatoes to make $\frac{1}{3}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
3) Rachel spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
5) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
6) A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
7) Lana was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
8) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
9) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
10) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?

Answers

1. $1 / 2$ miles
2. \qquad bags
3. \qquad 2 hours
4. \qquad 3 containers
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9.

10. \qquad

Solve each problem.

1) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
3) Maria spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) A snail going full speed was taking $1 / 2$ of a minute to move $1 / 3$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
5) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
6) A container of gasoline that held $1 / 2$ of a liter could fill up $1 / 3$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
7) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
8) Debby was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
9) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
10) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $1 / 3$ of a jug. How many bottles of perfume would you need to fill the entire jug?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
3) Maria spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) A snail going full speed was taking $1 / 2$ of a minute to move $1 / 3$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
5) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
6) A container of gasoline that held $1 / 2$ of a liter could fill up $1 / 3$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
7) A bag of chocolate mix that weighed $1 / 2$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
8) Debby was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
9) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
10) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $1 / 3$ of a jug. How many bottles of perfume would you need to fill the entire jug?

Answers

1. \qquad
2. \qquad bags
$11 / 2$ hours
3.

$1 / 2$ minutes
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad Solve each problem.

1) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
2) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
3) A small can of paint was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
4) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
5) A basket of lemons weighed $1 / 2$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
6) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
7) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
8) It takes a baker $1 / 2$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
9) Carol was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
10) Nancy spent $1 / 2$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
2) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
3) A small can of paint was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
4) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
5) A basket of lemons weighed $1 / 2$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
6) A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
7) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
8) It takes a baker $1 / 2$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
9) Carol was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
10) Nancy spent $1 / 2$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

Answers

1. \qquad
2. \qquad
3. \qquad
$1 \frac{1}{2}$ hours
4. \qquad
5. \qquad
6. \qquad
7. \qquad $1 / 2$ hours
8. \qquad
9. \qquad $1 / 2$ hours
10. \qquad

Solve each problem.

1) A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
2) While exercising Victor walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
3) A bag of chocolate mix that weighed $1 / 2$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
4) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
5) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?
6) A container of gasoline that held $1 / 2$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
7) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
8) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
9) A chef used $1 / 2$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
10) A snail going full speed was taking $1 / 2$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

Answers

1. \qquad
2. \qquad
3.
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $1 / 3$ of a jug. How many bottles of perfume would you need to fill the entire jug?
2) While exercising Victor walked $\frac{1}{2}$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
3) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
4) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
5) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
6) A container of gasoline that held $1 / 2$ of a liter could fill up $1 / 3$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
7) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
8) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
9) A chef used $1 / 2$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
10) A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

Answers

1. \qquad bottles
2. \qquad miles
3. \qquad
4. \qquad
$1 / 2$ seconds
5. \qquad
6.

$1 \frac{1}{2}$ hours
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A bag of chocolate mix that weighed $1 / 2$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
2) A basket of lemons weighed $1 / 2$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
3) Nancy spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) Paige was using a container to fill up a fishbowl. The container held $1 / 2$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
5) A carpenter used $1 / 2$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
6) A restaurant took $\frac{1}{2}$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
7) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
8) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
9) A snail going full speed was taking $1 / 2$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
10) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Math www.CommonCoreSheets.com

Solve each problem.

1) A bag of chocolate mix that weighed $1 / 2$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
2) A basket of lemons weighed $1 / 2$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
3) Nancy spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) Paige was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
5) A carpenter used $1 / 2$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
6) A restaurant took $\frac{1}{2}$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
7) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
8) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
9) A snail going full speed was taking $1 / 2$ of a minute to move $1 / 3$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
10) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?

Answers

1. \qquad
2. \qquad 3 baskets
3. $1 \frac{1}{2}$ hours
4. \qquad
5. \qquad
6. \qquad
7. $1 \frac{1}{2}$ hours
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
2) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
3) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
4) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?
5) A carpenter used $1 / 2$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
6) Amy was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
7) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
8) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
9) It takes a baker $1 / 2$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
10) Lana spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

Answers
1.
2. \qquad
3.
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
2) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug?
3) A basket of lemons weighed $1 / 2$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
4) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
5) A carpenter used $1 / 2$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
6) Amy was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
7) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
8) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
9) It takes a baker $1 / 2$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
10) Lana spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

Answers

1. \qquad
2. \qquad bags
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. $1 \frac{1}{2}$ hours
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?
2) A chef used $1 / 2$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
3) A small can of paint was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
4) A snail going full speed was taking $1 / 2$ of a minute to move $1 / 3$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
5) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
6) A basket of lemons weighed $1 / 2$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
7) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
8) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
9) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
10) Haley spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

Answers
1.
2. \qquad
3.
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
0.

Solve each problem.

1) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?
2) A chef used $1 / 2$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
3) A small can of paint was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
4) A snail going full speed was taking $1 / 2$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
5) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
6) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
7) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
8) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
9) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
10) Haley spent $1 / 2$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

Answers

1. $1 \frac{1}{2}$ seconds
2. \qquad
3. \qquad
$1 / 2$ minutes
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
$1 / 2$ hours
10. \qquad

Solve each problem.

1) It takes a baker $1 / 2$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
2) A water hose had filled up $\frac{1}{3}$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
3) Faye spent $1 / 2$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?
4) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
5) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
6) A container of gasoline that held $1 / 2$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
7) A snail going full speed was taking $1 / 2$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
8) While exercising Billy walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
9) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
10) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
2) A water hose had filled up $1 / 3$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
3) Faye spent $\frac{1}{2}$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
5) A bag of chocolate mix that weighed $1 / 2$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
6) A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
7) A snail going full speed was taking $1 / 2$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
8) While exercising Billy walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
9) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
10) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

Answers

1. $1 / 2$ hours
2. \qquad hours
3. $1 \frac{1}{2}$ hours
4. \qquad
5. \qquad
6. \qquad
7.

$1 \frac{1}{2}$ minutes
$1 / \frac{1}{2}$ miles

9. \qquad
$1 / 2$ hours
10. \qquad

Solve each problem.

1) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
2) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
3) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
4) A container of gasoline that held $1 / 2$ of a liter could fill up $1 / 3$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
5) While exercising George walked $\frac{1}{2}$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
6) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
7) A chef used $1 / 2$ of a bag of potatoes to make $\frac{1}{3}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
8) Emily was using a container to fill up a fishbowl. The container held $1 / 2$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
9) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
10) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?

Answers
1.
2. \qquad
3.
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
0.

Solve each problem.

1) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug?
2) A water hose had filled up $\frac{1}{3}$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
3) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
4) A container of gasoline that held $1 / 2$ of a liter could fill up $1 / 3$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
5) While exercising George walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
6) A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $1 / 3$ of a jug. How many bottles of perfume would you need to fill the entire jug?
7) A chef used $1 / 2$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
8) Emily was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
9) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
10) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?

Answers

1. $11 / 2$ bags
2. \qquad hours
3. $1 \frac{1}{2}$ hours
4. \qquad 3 containers
5. \qquad
6. \qquad
7. $\quad 1 / 2$ bags
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A small can of paint was $1 / 2$ of a liter. That was enough to fill $1 / 3$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
2) While exercising Jerry walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
3) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
4) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
5) A snail going full speed was taking $1 / 2$ of a minute to move $1 / 3$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
6) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
7) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
8) Haley spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
9) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
10) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
2) While exercising Jerry walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
3) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
4) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
5) A snail going full speed was taking $1 / 2$ of a minute to move $1 / 3$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
6) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
7) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
8) Haley spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
9) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
10) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?

Answers

1. \qquad $1 / 2$ miles
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
