	Understanding Unit Rate Nam	e:			
Solv	Solve each problem. <u>Answers</u>				
1)	A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer How many cans of paint would it take to completely fill the sprayer?	. 1			
2)	While exercising Jerry walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?	3.			
3)	A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?	4. 5.			
4)	A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?	6.			
5)	A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?	8.			
6)	A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?	10			
7)	A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?	7			
8)	Haley spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?				
9)	A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?				
10)	An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?				

	Understanding Unit RateName:Answer KeySolve each problem.Answers			
1)	A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?	1. 3 cans		
2)	While exercising Jerry walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?	2. $\frac{1^{1/2}}{2}$ miles 3. 3 bags		
3)	A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?	4. 3 bottles 5. $1^{1/2}$ minutes		
4)	A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?	6. 3 bags 7. $1^{1/2}$ hours		
5)	A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?	8. $\frac{1^{1}/_{2} \text{ hours}}{1^{1}/_{2} \text{ hours}}$ 9. $\frac{1^{1}/_{2} \text{ hours}}{1^{1}/_{2} \text{ hours}}$		
6)	A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?	10. <u>3 potatoes</u>		
7)	A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?			
8)	Haley spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?			
9)	A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?			
10)	An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?			

Math

www.CommonCoreSheets.com