Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Ex)

Tickets Sold (x)	9	4	7	2	10
Money Earned (y)	108	48	84	24	120

Every ticket sold _12_ dollars are earned.
1)

Pieces of Chicken (x)	4	7	8	10	9
Price in dollars (\mathbf{y})	4	7	8	10	9

For each piece of chicken it costs \qquad dollars.
2)

Chocolate Bars (x)	10	8	5	4	7
Calories (y)	2,030	1,624	1,015	812	1,421

Every chocolate bar has \qquad calories.
3)

Boxes of Candy (x)	9	4	5	8	3
Pieces of Candy (y)	162	72	90	144	54

For every box of candy you get \qquad pieces.
4)

Glasses of Lemonade (x)	3	7	8	9	6
Lemons Used (y)	15	35	40	45	30

For every glass of lemonade there were \qquad lemons used.
5)

Concrete Blocks (x)	4	7	2	3	5
weight in kilograms (y)	20	35	10	15	25

Every concrete block weighs \qquad kilograms.
6)

Phone Sold (x)	8	2	7	6	10
Money Earned (y)	272	68	238	204	340

Every phone sold earns \qquad dollars.
7)

Time in minute (x)	3	10	7	2	8
Gallons of Water Used (y)	147	490	343	98	392

Every minute \qquad gallons of water are used.
8)

Cans of Paint (x)	6	7	4	2	9
Bird Houses Painted (y)	30	35	20	10	45

For every can of paint you could paint \qquad bird houses.

Ex. $\quad \mathbf{y}=12 \mathrm{x}$

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9.

Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathrm{kx}$

Ex)

Tickets Sold (x)	9	4	7	2	10
Money Earned (y)	108	48	84	24	120

Every ticket sold __12_ dollars are earned.
1)

Pieces of Chicken (x)	4	7	8	10	9
Price in dollars (\mathbf{y})	4	7	8	10	9

For each piece of chicken it costs _1_ dollars.
2)

Chocolate Bars (x)	10	8	5	4	7
Calories (y)	2,030	1,624	1,015	812	1,421

Every chocolate bar has 203 calories.
3)

Boxes of Candy (x)	9	4	5	8	3
Pieces of Candy (y)	162	72	90	144	54

For every box of candy you get _18_ pieces.
4)

Glasses of Lemonade (x)	3	7	8	9	6
Lemons Used (y)	15	35	40	45	30

For every glass of lemonade there were $\quad 5 \quad$ lemons used.
5)

Concrete Blocks (x)	4	7	2	3	5
weight in kilograms (y)	20	35	10	15	25

Every concrete block weighs _ 5 kilograms.
6)

Phone Sold (x)	8	2	7	6	10
Money Earned (y)	272	68	238	204	340

Every phone sold earns _34_dollars.
7)

Time in minute (x)	3	10	7	2	8
Gallons of Water Used (y)	147	490	343	98	392

Every minute _ 49 gallons of water are used.
8)

Cans of Paint (x)	6	7	4	2	9
Bird Houses Painted (y)	30	35	20	10	45

For every can of paint you could paint _ 5 _ bird houses.
\qquad
\qquad

Answers

Ex. $\quad \mathbf{y}=12 \mathrm{x}$

1. $\mathbf{y}=1 \mathbf{x}$
2. $\mathbf{y}=\mathbf{2 0 3 x}$
3. $\mathbf{y}=18 \mathrm{x}$
4.

$$
y=5 x
$$

5. $\quad \mathbf{y}=\mathbf{5 x}$
6. $\mathbf{y}=\mathbf{3 4} \mathbf{x}$
7. $\quad y=49 x$
8. $\quad \mathbf{y}=\mathbf{5 x}$ $-$
