Solve each problem.

1) A single box of thumb tacks weighed $2 \frac{1}{2}$ ounces. If a teacher had $1 \frac{2}{3}$ boxes, how much
would their combined weight be?
2) A bottle of sugar syrup soda had $2 \frac{2}{3}$ grams of sugar in it. If Oliver drank 1 full bottles and $1 / 2$ of a bottle, how many grams of sugar did he drink?
3) A package of paper weighs $2 \frac{1}{2}$ ounces. If Billy put $3 / 3$ packages of paper on a scale, how much would they weigh?
4) An old road was $3 / 4$ miles long. After a renovation it was $1 / 2$ times as long. How long was the road after the renovation?
5) A doctor told his patient to drink 2 full cups and $\frac{1}{3}$ of a cup of medicine over a week. If each full cup was $1 \frac{1}{2}$ pints, how much is he going to drink over the week?
6) Haley had 1 full cement blocks and one that was $\frac{1}{3}$ the normal size. If each full block weighed $2 \frac{1}{2}$ pounds, what is the weight of the blocks Haley has?
7) A new washing machine used $3 / 5$ gallons of water per full load to clean clothes. If Adam washed $2 \frac{1}{2}$ loads of clothes, how many gallons of water would be used?
8) A baby frog weighed $2 \frac{2}{4}$ ounces. After a month it was $2 \frac{3}{4}$ times as heavy, how much did the frog weigh after a month?
9) A bag of strawberry candy takes $2 / 5$ ounces of strawberries to make. If you have $3 \frac{1}{3}$ bags, how many ounces of strawberries did it take to make them?
10) Nancy needed a piece of string to be exactly $2 / 5$ feet long. If the string she has is $1 / 3$ times as long as it should be, how long is the string?
11) A bottle of home-made cleaning solution took $2 / 5$ milliliters of lemon juice. If Rachel wanted to make $3 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
12) Henry had a lump of silly putty that was $2 \frac{4}{5}$ inches long. If he stretched it out to $1 \frac{3}{5}$ times its current length how long would it be?
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad

Solve each problem.

1) A single box of thumb tacks weighed $2 \frac{1}{2}$ ounces. If a teacher had $1 / 3$ boxes, how much would their combined weight be?
2) A bottle of sugar syrup soda had $2 \frac{2}{3}$ grams of sugar in it. If Oliver drank 1 full bottles and $1 / 2$ of a bottle, how many grams of sugar did he drink?
3) A package of paper weighs $2 \frac{1}{2}$ ounces. If Billy put $3 \frac{2}{3}$ packages of paper on a scale, how much would they weigh?
4) An old road was $3 / 4$ miles long. After a renovation it was $1 / 2$ times as long. How long was the road after the renovation?
5) A doctor told his patient to drink 2 full cups and $1 / 3$ of a cup of medicine over a week. If each full cup was $1 \frac{1}{2}$ pints, how much is he going to drink over the week?
6) Haley had 1 full cement blocks and one that was $\frac{1}{3}$ the normal size. If each full block weighed $2 \frac{1}{2}$ pounds, what is the weight of the blocks Haley has?
7) A new washing machine used $3 / 5$ gallons of water per full load to clean clothes. If Adam washed $2 \frac{1}{2}$ loads of clothes, how many gallons of water would be used?
8) A baby frog weighed $2 \frac{2}{4}$ ounces. After a month it was $2 \frac{3}{4}$ times as heavy, how much did the frog weigh after a month?
9) A bag of strawberry candy takes $2 \frac{2}{5}$ ounces of strawberries to make. If you have $3 \frac{1}{3}$ bags, how many ounces of strawberries did it take to make them?
10) Nancy needed a piece of string to be exactly $2 / 5$ feet long. If the string she has is $1 / 3$ times as long as it should be, how long is the string?
11) A bottle of home-made cleaning solution took $2 / 5$ milliliters of lemon juice. If Rachel wanted to make $3 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
12) Henry had a lump of silly putty that was $2 / 5$ inches long. If he stretched it out to $1 \frac{3}{5}$ times its current length how long would it be?

Answers
1.

2.

3. \qquad

4. $\frac{5 \%}{23}$| $3 / 6$ |
| :--- |
5.
6.

$9{ }^{0} / 10$
8. \qquad
10. \qquad
11. \qquad
12. \qquad

Solve each problem.

$3 \frac{2}{6}$	$9^{0} / 10$	$3^{3} / 15$	$4 / 6$	$3 / 6$
$9 / 6$	$8^{0} / 15$	$6^{14} / 16$	$4 \frac{1}{6}$	$5 \frac{5}{8}$

1) A single box of thumb tacks weighed $2 \frac{1}{2}$ ounces. If a teacher had $1 \frac{2}{3}$ boxes, how much would their combined weight be?
2) A bottle of sugar syrup soda had $2 \frac{2}{3}$ grams of sugar in it. If Oliver drank 1 full bottles and $1 / 2$ of a bottle, how many grams of sugar did he drink?
3) A package of paper weighs $2 \frac{1}{2}$ ounces. If Billy put $3 \frac{2}{3}$ packages of paper on a scale, how much would they weigh?
4) An old road was $3 / 4$ miles long. After a renovation it was $1 / 2$ times as long. How long was the road after the renovation?
5) A doctor told his patient to drink 2 full cups and $1 / 3$ of a cup of medicine over a week. If each full cup was $1 \frac{1}{2}$ pints, how much is he going to drink over the week?
6) Haley had 1 full cement blocks and one that was $\frac{1}{3}$ the normal size. If each full block weighed $2 \frac{1}{2}$ pounds, what is the weight of the blocks Haley has?
7) A new washing machine used $3 / 5$ gallons of water per full load to clean clothes. If Adam washed $2 \frac{1}{2}$ loads of clothes, how many gallons of water would be used?
8) A baby frog weighed $2 \frac{2}{4}$ ounces. After a month it was $2 \frac{3}{4}$ times as heavy, how much did the frog weigh after a month?
9) A bag of strawberry candy takes $2 \frac{2}{5}$ ounces of strawberries to make. If you have $3 \frac{1}{3}$ bags, how many ounces of strawberries did it take to make them?
10) Nancy needed a piece of string to be exactly $2 / 5$ feet long. If the string she has is $1 / 3$ times as long as it should be, how long is the string?
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
.

10
times as long as it snouia be, now iong is the string!

