Solve each problem.

1) A water hose had filled up \(\frac{1}{7} \) of a pool after \(\frac{1}{10} \) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{2} \) of a minute to move \(\frac{1}{2} \) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{10} \) of a second to make enough pencils to fill \(\frac{1}{2} \) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{10} \) bag of oranges. This amount of juice filled up \(\frac{1}{3} \) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Haley spent \(\frac{1}{2} \) of an hour playing on her phone. That used up \(\frac{1}{9} \) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Ned walked \(\frac{1}{9} \) of a mile in \(\frac{1}{2} \) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{2} \) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{4} \) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{4} \) of a bag of potatoes to make \(\frac{1}{9} \) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{10} \) of an hour to use \(\frac{1}{3} \) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{2} \) of a pool after \(\frac{1}{2} \) of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up \(\frac{1}{7} \) of a pool after \(\frac{1}{10} \) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{2} \) of a minute to move \(\frac{1}{2} \) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{10} \) of a second to make enough pencils to fill \(\frac{1}{2} \) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{10} \) bag of oranges. This amount of juice filled up \(\frac{1}{3} \) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Haley spent \(\frac{1}{2} \) of an hour playing on her phone. That used up \(\frac{1}{9} \) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Ned walked \(\frac{1}{9} \) of a mile in \(\frac{1}{2} \) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{2} \) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{4} \) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{4} \) of a bag of potatoes to make \(\frac{1}{9} \) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{10} \) of an hour to use \(\frac{1}{3} \) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{2} \) of a pool after \(\frac{1}{2} \) of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up $\frac{1}{4}$ of a pool after $\frac{1}{7}$ of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking $\frac{1}{5}$ of a minute to move $\frac{1}{9}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took $\frac{1}{7}$ of a second to make enough pencils to fill $\frac{1}{10}$ of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from $\frac{1}{10}$ bag of oranges. This amount of juice filled up $\frac{1}{10}$ of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Janet spent $\frac{1}{9}$ of an hour playing on her phone. That used up $\frac{1}{4}$ of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Mike walked $\frac{1}{8}$ of a mile in $\frac{1}{6}$ of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{5}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used $\frac{1}{9}$ of a bag of potatoes to make $\frac{1}{5}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took $\frac{1}{10}$ of an hour to use $\frac{1}{9}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{10}$ of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up \(\frac{1}{4} \) of a pool after \(\frac{1}{7} \) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{5} \) of a minute to move \(\frac{1}{9} \) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{7} \) of a second to make enough pencils to fill \(\frac{1}{10} \) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{10} \) bag of oranges. This amount of juice filled up \(\frac{1}{10} \) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Janet spent \(\frac{1}{9} \) of an hour playing on her phone. That used up \(\frac{1}{4} \) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Mike walked \(\frac{1}{8} \) of a mile in \(\frac{1}{6} \) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{2} \) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{5} \) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{9} \) of a bag of potatoes to make \(\frac{1}{5} \) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{10} \) of an hour to use \(\frac{1}{9} \) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{3} \) of a pool after \(\frac{1}{10} \) of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up $\frac{1}{9}$ of a pool after $\frac{1}{4}$ of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking $\frac{1}{5}$ of a minute to move $\frac{1}{7}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took $\frac{1}{9}$ of a second to make enough pencils to fill $\frac{1}{7}$ of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from $\frac{1}{7}$ bag of oranges. This amount of juice filled up $\frac{1}{9}$ of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Robin spent $\frac{1}{10}$ of an hour playing on her phone. That used up $\frac{1}{8}$ of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Roger walked $\frac{1}{2}$ of a mile in $\frac{1}{9}$ of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used $\frac{1}{8}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{3}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used $\frac{1}{7}$ of a bag of potatoes to make $\frac{1}{10}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took $\frac{1}{3}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up $\frac{1}{9}$ of a pool after $\frac{1}{5}$ of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up \(\frac{1}{9}\) of a pool after \(\frac{1}{4}\) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{5}\) of a minute to move \(\frac{1}{7}\) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{9}\) of a second to make enough pencils to fill \(\frac{1}{7}\) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{7}\) bag of oranges. This amount of juice filled up \(\frac{1}{9}\) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Robin spent \(\frac{1}{10}\) of an hour playing on her phone. That used up \(\frac{1}{6}\) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Roger walked \(\frac{1}{2}\) of a mile in \(\frac{1}{9}\) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{8}\) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{3}\) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{7}\) of a bag of potatoes to make \(\frac{1}{10}\) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{3}\) of an hour to use \(\frac{1}{3}\) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{9}\) of a pool after \(\frac{1}{5}\) of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up \(\frac{1}{3} \) of a pool after \(\frac{1}{5} \) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{7} \) of a minute to move \(\frac{1}{9} \) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{2} \) of a second to make enough pencils to fill \(\frac{1}{6} \) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{7} \) bag of oranges. This amount of juice filled up \(\frac{1}{2} \) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Bianca spent \(\frac{1}{4} \) of an hour playing on her phone. That used up \(\frac{1}{2} \) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Oliver walked \(\frac{1}{7} \) of a mile in \(\frac{1}{6} \) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{10} \) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{5} \) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{7} \) of a bag of potatoes to make \(\frac{1}{5} \) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{8} \) of an hour to use \(\frac{1}{9} \) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{7} \) of a pool after \(\frac{1}{6} \) of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up \(\frac{1}{3}\) of a pool after \(\frac{1}{5}\) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{7}\) of a minute to move \(\frac{1}{9}\) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{2}\) of a second to make enough pencils to fill \(\frac{1}{6}\) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{7}\) bag of oranges. This amount of juice filled up \(\frac{1}{2}\) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Bianca spent \(\frac{1}{4}\) of an hour playing on her phone. That used up \(\frac{1}{2}\) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Oliver walked \(\frac{1}{7}\) of a mile in \(\frac{1}{6}\) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{10}\) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{5}\) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{7}\) of a bag of potatoes to make \(\frac{1}{5}\) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{8}\) of an hour to use \(\frac{1}{9}\) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{7}\) of a pool after \(\frac{1}{6}\) of an hour. At this rate, how many hours would it take to fill the pool?

<table>
<thead>
<tr>
<th>Answers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\frac{3}{5}) hour</td>
<td></td>
</tr>
<tr>
<td>2. (1 \frac{2}{7}) minutes</td>
<td></td>
</tr>
<tr>
<td>3. (4 \frac{1}{2}) seconds</td>
<td></td>
</tr>
<tr>
<td>4. (\frac{2}{7}) bag</td>
<td></td>
</tr>
<tr>
<td>5. (\frac{2}{4}) hour</td>
<td></td>
</tr>
<tr>
<td>6. (\frac{6}{7}) mile</td>
<td></td>
</tr>
<tr>
<td>7. (\frac{5}{10}) box</td>
<td></td>
</tr>
<tr>
<td>8. (\frac{5}{7}) bag</td>
<td></td>
</tr>
<tr>
<td>9. (1 \frac{1}{8}) hours</td>
<td></td>
</tr>
<tr>
<td>10. (\frac{6}{7}) hour</td>
<td></td>
</tr>
</tbody>
</table>
Solve each problem.

1) A water hose had filled up \(\frac{1}{7}\) of a pool after \(\frac{1}{6}\) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{3}\) of a minute to move \(\frac{1}{3}\) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{8}\) of a second to make enough pencils to fill \(\frac{1}{6}\) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{7}\) bag of oranges. This amount of juice filled up \(\frac{1}{3}\) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Debby spent \(\frac{1}{6}\) of an hour playing on her phone. That used up \(\frac{1}{5}\) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Roger walked \(\frac{1}{2}\) of a mile in \(\frac{1}{3}\) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{6}\) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{2}\) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{9}\) of a bag of potatoes to make \(\frac{1}{3}\) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{10}\) of an hour to use \(\frac{1}{2}\) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{2}\) of a pool after \(\frac{1}{9}\) of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up \(\frac{1}{7} \) of a pool after \(\frac{1}{6} \) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{3} \) of a minute to move \(\frac{1}{3} \) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{8} \) of a second to make enough pencils to fill \(\frac{1}{6} \) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{7} \) bag of oranges. This amount of juice filled up \(\frac{1}{3} \) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Debby spent \(\frac{1}{6} \) of an hour playing on her phone. That used up \(\frac{1}{5} \) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Roger walked \(\frac{1}{2} \) of a mile in \(\frac{1}{3} \) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{6} \) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{2} \) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{9} \) of a bag of potatoes to make \(\frac{1}{3} \) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{10} \) of an hour to use \(\frac{1}{2} \) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{2} \) of a pool after \(\frac{1}{9} \) of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. \(\frac{1}{6} \) hours
2. 1 minute
3. \(\frac{6}{8} \) second
4. \(\frac{3}{7} \) bag
5. \(\frac{5}{6} \) hour
6. \(\frac{1}{2} \) miles
7. \(\frac{1}{6} \) boxes
8. \(\frac{3}{9} \) bag
9. \(\frac{2}{10} \) hour
10. \(4 \frac{1}{2} \) hours
Solve each problem.

1) A water hose had filled up $\frac{1}{8}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking $\frac{1}{4}$ of a minute to move $\frac{1}{2}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took $\frac{1}{4}$ of a second to make enough pencils to fill $\frac{1}{2}$ of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from $\frac{1}{4}$ bag of oranges. This amount of juice filled up $\frac{1}{10}$ of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Tiffany spent $\frac{1}{9}$ of an hour playing on her phone. That used up $\frac{1}{4}$ of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Oliver walked $\frac{1}{10}$ of a mile in $\frac{1}{2}$ of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used $\frac{1}{3}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{5}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used $\frac{1}{4}$ of a bag of potatoes to make $\frac{1}{3}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took $\frac{1}{4}$ of an hour to use $\frac{1}{10}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up $\frac{1}{4}$ of a pool after $\frac{1}{8}$ of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up $\frac{1}{8}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking $\frac{1}{4}$ of a minute to move $\frac{1}{2}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took $\frac{1}{4}$ of a second to make enough pencils to fill $\frac{1}{2}$ of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from $\frac{1}{4}$ bag of oranges. This amount of juice filled up $\frac{1}{10}$ of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Tiffany spent $\frac{1}{9}$ of an hour playing on her phone. That used up $\frac{1}{4}$ of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Oliver walked $\frac{1}{10}$ of a mile in $\frac{1}{2}$ of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used $\frac{1}{3}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{5}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used $\frac{1}{4}$ of a bag of potatoes to make $\frac{1}{3}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took $\frac{1}{4}$ of an hour to use $\frac{1}{10}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up $\frac{1}{4}$ of a pool after $\frac{1}{8}$ of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up \(\frac{1}{8}\) of a pool after \(\frac{1}{5}\) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{3}\) of a minute to move \(\frac{1}{9}\) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{2}\) of a second to make enough pencils to fill \(\frac{1}{5}\) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{5}\) bag of oranges. This amount of juice filled up \(\frac{1}{8}\) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Olivia spent \(\frac{1}{8}\) of an hour playing on her phone. That used up \(\frac{1}{7}\) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Frank walked \(\frac{1}{8}\) of a mile in \(\frac{1}{5}\) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{7}\) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{10}\) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{3}\) of a bag of potatoes to make \(\frac{1}{5}\) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{6}\) of an hour to use \(\frac{1}{7}\) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{4}\) of a pool after \(\frac{1}{10}\) of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up $\frac{1}{8}$ of a pool after $\frac{1}{5}$ of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking $\frac{1}{3}$ of a minute to move $\frac{1}{9}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from $\frac{1}{5}$ bag of oranges. This amount of juice filled up $\frac{1}{8}$ of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Olivia spent $\frac{1}{8}$ of an hour playing on her phone. That used up $\frac{1}{7}$ of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Frank walked $\frac{1}{8}$ of a mile in $\frac{1}{5}$ of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used $\frac{1}{7}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{10}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used $\frac{1}{3}$ of a bag of potatoes to make $\frac{1}{5}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took $\frac{1}{6}$ of an hour to use $\frac{1}{7}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up $\frac{1}{4}$ of a pool after $\frac{1}{10}$ of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up $\frac{1}{6}$ of a pool after $\frac{1}{4}$ of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking $\frac{1}{9}$ of a minute to move $\frac{1}{9}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took $\frac{1}{7}$ of a second to make enough pencils to fill $\frac{1}{6}$ of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from $\frac{1}{2}$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Katie spent $\frac{1}{6}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Kaleb walked $\frac{1}{10}$ of a mile in $\frac{1}{4}$ of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used $\frac{1}{9}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{3}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used $\frac{1}{2}$ of a bag of potatoes to make $\frac{1}{7}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took $\frac{1}{3}$ of an hour to use $\frac{1}{7}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up $\frac{1}{8}$ of a pool after $\frac{1}{9}$ of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up \(\frac{1}{6} \) of a pool after \(\frac{1}{4} \) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{9} \) of a minute to move \(\frac{1}{9} \) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{7} \) of a second to make enough pencils to fill \(\frac{1}{6} \) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{2} \) bag of oranges. This amount of juice filled up \(\frac{1}{3} \) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Katie spent \(\frac{1}{6} \) of an hour playing on her phone. That used up \(\frac{1}{3} \) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Kaleb walked \(\frac{1}{10} \) of a mile in \(\frac{1}{4} \) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{9} \) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{3} \) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{2} \) of a bag of potatoes to make \(\frac{1}{7} \) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{3} \) of an hour to use \(\frac{1}{7} \) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{8} \) of a pool after \(\frac{1}{9} \) of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. \(1 \frac{2}{4} \) hours
2. 1 minute
3. \(\frac{6}{7} \) second
4. \(1 \frac{1}{2} \) bags
5. \(\frac{3}{6} \) hour
6. \(\frac{4}{10} \) mile
7. \(\frac{3}{9} \) box
8. \(3 \frac{1}{2} \) bags
9. \(2 \frac{1}{3} \) hours
10. \(1 \frac{1}{8} \) hours
Solve each problem.

1) A water hose had filled up \(\frac{1}{3} \) of a pool after \(\frac{1}{6} \) of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking \(\frac{1}{7} \) of a minute to move \(\frac{1}{7} \) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took \(\frac{1}{10} \) of a second to make enough pencils to fill \(\frac{1}{9} \) of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from \(\frac{1}{6} \) bag of oranges. This amount of juice filled up \(\frac{1}{10} \) of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Katie spent \(\frac{1}{3} \) of an hour playing on her phone. That used up \(\frac{1}{4} \) of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Luke walked \(\frac{1}{4} \) of a mile in \(\frac{1}{5} \) of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used \(\frac{1}{3} \) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{7} \) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used \(\frac{1}{5} \) of a bag of potatoes to make \(\frac{1}{2} \) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took \(\frac{1}{2} \) of an hour to use \(\frac{1}{9} \) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up \(\frac{1}{9} \) of a pool after \(\frac{1}{7} \) of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{6}$ of an hour. At this rate, how many hours would it take to fill the pool?

\[\frac{3}{6} \text{ hour} \]

2) A snail going full speed was taking $\frac{1}{7}$ of a minute to move $\frac{1}{7}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

\[\frac{9}{10} \text{ second} \]

3) A pencil making machine took $\frac{1}{10}$ of a second to make enough pencils to fill $\frac{1}{9}$ of a box. At this rate, how long would it take the machine to fill the entire box?

\[1 \frac{1}{3} \text{ hours} \]

4) A dejuicer was able to squeeze a pint of juice from $\frac{1}{6}$ bag of oranges. This amount of juice filled up $\frac{1}{10}$ of a jug. At this rate, how many bags will it take to fill the entire jug?

\[1 \frac{4}{6} \text{ bags} \]

5) Katie spent $\frac{1}{3}$ of an hour playing on her phone. That used up $\frac{1}{4}$ of her battery. How long would she have to play on her phone to use the entire battery?

\[4 \frac{1}{2} \text{ hours} \]

6) While exercising Luke walked $\frac{1}{4}$ of a mile in $\frac{1}{5}$ of an hour. At this rate, how far will he have travelled after an hour?

\[1 \frac{1}{4} \text{ miles} \]

7) A carpenter used $\frac{1}{3}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{7}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?

\[2 \frac{1}{3} \text{ boxes} \]

8) A chef used $\frac{1}{5}$ of a bag of potatoes to make $\frac{1}{2}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

\[\frac{2}{5} \text{ bag} \]

9) A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{6}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

\[7 \frac{1}{9} \text{ hour} \]

10) A water hose had filled up $\frac{1}{9}$ of a pool after $\frac{1}{7}$ of an hour. At this rate, how many hours would it take to fill the pool?

\[\frac{3}{6} \text{ hour} \]
Solve each problem.

1) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{4}$ of an hour. At this rate, how many hours would it take to fill the pool?

2) A snail going full speed was taking $\frac{1}{3}$ of a minute to move $\frac{1}{7}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3) A pencil making machine took $\frac{1}{8}$ of a second to make enough pencils to fill $\frac{1}{6}$ of a box. At this rate, how long would it take the machine to fill the entire box?

4) A dejuicer was able to squeeze a pint of juice from $\frac{1}{5}$ bag of oranges. This amount of juice filled up $\frac{1}{8}$ of a jug. At this rate, how many bags will it take to fill the entire jug?

5) Maria spent $\frac{1}{5}$ of an hour playing on her phone. That used up $\frac{1}{9}$ of her battery. How long would she have to play on her phone to use the entire battery?

6) While exercising Ned walked $\frac{1}{8}$ of a mile in $\frac{1}{8}$ of an hour. At this rate, how far will he have travelled after an hour?

7) A carpenter used $\frac{1}{8}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{4}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8) A chef used $\frac{1}{4}$ of a bag of potatoes to make $\frac{1}{6}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9) A restaurant took $\frac{1}{9}$ of an hour to use $\frac{1}{6}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

10) A water hose had filled up $\frac{1}{9}$ of a pool after $\frac{1}{5}$ of an hour. At this rate, how many hours would it take to fill the pool?
Solve each problem.

1. A water hose had filled up \(\frac{1}{3} \) of a pool after \(\frac{1}{4} \) of an hour. At this rate, how many hours would it take to fill the pool?

2. A snail going full speed was taking \(\frac{1}{3} \) of a minute to move \(\frac{1}{7} \) of a centimeter. At this rate, how long would it take the snail to travel a centimeter?

3. A pencil making machine took \(\frac{1}{8} \) of a second to make enough pencils to fill \(\frac{1}{6} \) of a box. At this rate, how long would it take the machine to fill the entire box?

4. A dejuicer was able to squeeze a pint of juice from \(\frac{1}{5} \) bag of oranges. This amount of juice filled up \(\frac{1}{8} \) of a jug. At this rate, how many bags will it take to fill the entire jug?

5. Maria spent \(\frac{1}{5} \) of an hour playing on her phone. That used up \(\frac{1}{9} \) of her battery. How long would she have to play on her phone to use the entire battery?

6. While exercising Ned walked \(\frac{1}{8} \) of a mile in \(\frac{1}{8} \) of an hour. At this rate, how far will he have travelled after an hour?

7. A carpenter used \(\frac{1}{8} \) of a box of nails while working on a birdhouse and was able to finish \(\frac{1}{4} \) of it. At this rate, how many boxes will he need to finish the entire birdhouse?

8. A chef used \(\frac{1}{4} \) of a bag of potatoes to make \(\frac{1}{6} \) of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?

9. A restaurant took \(\frac{1}{9} \) of an hour to use \(\frac{1}{6} \) of a package of napkins. At this rate, how many hours would it take to use the entire package?

10. A water hose had filled up \(\frac{1}{9} \) of a pool after \(\frac{1}{5} \) of an hour. At this rate, how many hours would it take to fill the pool?

Answers

<table>
<thead>
<tr>
<th></th>
<th>1. (\frac{3}{4}) hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>(2 \frac{1}{3}) minutes</td>
</tr>
<tr>
<td>3.</td>
<td>(\frac{6}{8}) second</td>
</tr>
<tr>
<td>4.</td>
<td>(1 \frac{3}{5}) bags</td>
</tr>
<tr>
<td>5.</td>
<td>(1 \frac{4}{5}) hours</td>
</tr>
<tr>
<td>6.</td>
<td>1 mile</td>
</tr>
<tr>
<td>7.</td>
<td>(\frac{4}{8}) box</td>
</tr>
<tr>
<td>8.</td>
<td>(1 \frac{2}{4}) bags</td>
</tr>
<tr>
<td>9.</td>
<td>(\frac{6}{9}) hour</td>
</tr>
<tr>
<td>10.</td>
<td>(\frac{5}{9}) hour</td>
</tr>
</tbody>
</table>