To solve multiplication problems with fractions one strategy is to think of them as addition problems. For example the problem above is the same as:

\[\frac{2}{4} + \frac{2}{4} + \frac{2}{4} \]

If we shade in \(\frac{2}{4} \) on the fractions below 3 times we can see a visual representation of the problem.

After shading it in we can see why \(\frac{2}{4} \) three times is equal to 1 whole and \(\frac{2}{4} \).

1) \(\frac{11}{12} \times 6 = \)
2) \(\frac{5}{8} \times 6 = \)
3) \(\frac{3}{4} \times 3 = \)
4) \(\frac{1}{3} \times 3 = \)
5) \(\frac{3}{5} \times 3 = \)
6) \(\frac{1}{3} \times 2 = \)
7) \(\frac{1}{3} \times 4 = \)
8) \(\frac{1}{8} \times 5 = \)
9) \(\frac{2}{3} \times 2 = \)
10) \(\frac{6}{10} \times 2 = \)
11) \(\frac{2}{5} \times 3 = \)
12) \(\frac{7}{10} \times 4 = \)
Multiplying Fractions by Whole Numbers (visual)

Use the visual model to solve each problem.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{4} \times 3 =)</td>
<td>[Diagram showing (\frac{3}{4} + \frac{3}{4} + \frac{3}{4})]</td>
</tr>
<tr>
<td>(\frac{2}{3} \times 3 =)</td>
<td>[Diagram showing shaded circles for (\frac{2}{3} \times 3)]</td>
</tr>
<tr>
<td>(\frac{2}{4} \times 3 = 1 \frac{2}{4})</td>
<td>[Diagram showing shaded circles for (\frac{2}{4} \times 3)]</td>
</tr>
</tbody>
</table>

To solve multiplication problems with fractions, one strategy is to think of them as addition problems. For example, the problem above is the same as:

\[\frac{3}{4} + \frac{3}{4} + \frac{3}{4} \]

If we shade in \(\frac{3}{4} \) as many times as needed, we can see a visual representation of the problem.

Answers

1. \(5 \frac{5}{12}\)
2. \(3 \frac{3}{8}\)
3. \(2 \frac{1}{4}\)
4. \(1\)
5. \(1 \frac{4}{5}\)
6. \(0 \frac{2}{3}\)
7. \(1 \frac{1}{3}\)
8. \(0 \frac{5}{8}\)
9. \(1 \frac{1}{3}\)
10. \(1 \frac{2}{10}\)
11. \(1 \frac{1}{5}\)
12. \(2 \frac{8}{10}\)