Use the visual model to solve each problem.

\[\frac{2}{4} \times 3 = \]

To solve multiplication problems with fractions one strategy is to think of them as addition problems. For example the problem above is the same as:

\[\frac{2}{4} + \frac{2}{4} + \frac{2}{4} \]

If we shade in \(\frac{2}{4} \) on the fractions below 3 times we can see a visual representation of the problem.

After shading it in we can see why \(\frac{2}{4} \) three times is equal to 1 whole and \(\frac{2}{4} \).

1) \(\frac{4}{6} \times 5 = \)
2) \(\frac{1}{6} \times 3 = \)
3) \(\frac{5}{6} \times 4 = \)
4) \(\frac{1}{3} \times 6 = \)
5) \(\frac{6}{8} \times 2 = \)
6) \(\frac{7}{8} \times 7 = \)
7) \(\frac{2}{4} \times 6 = \)
8) \(\frac{3}{4} \times 3 = \)
9) \(\frac{9}{10} \times 3 = \)
10) \(\frac{4}{6} \times 2 = \)
11) \(\frac{1}{5} \times 6 = \)
12) \(\frac{10}{12} \times 4 = \)
To solve multiplication problems with fractions, one strategy is to think of them as addition problems. For example, the problem above is the same as:

\[\frac{2}{4} + \frac{2}{4} + \frac{2}{4} \]

If we shade in \(\frac{2}{4} \) on the fractions below 3 times, we can see a visual representation of the problem.

After shading it in, we can see why \(\frac{2}{4} \) three times is equal to 1 whole and \(\frac{2}{4} \).

Answers

1. \(3 \frac{2}{6} \)
2. \(2 \)
3. \(3 \frac{3}{6} \)
4. \(2 \)
5. \(1 \frac{4}{8} \)
6. \(6 \frac{1}{8} \)
7. \(3 \)
8. \(2 \frac{3}{4} \)
9. \(2 \frac{7}{10} \)
10. \(0 \frac{2}{6} \)
11. \(1 \frac{1}{5} \)
12. \(3 \frac{4}{12} \)