Using Pythagorean Theorem

Find the value of 'C' round your answer to the nearest hundredth.

1) \(\sqrt{6^2 + 9^2} = \sqrt{36 + 81} = \sqrt{117} = 10.82 \\
2) \(\sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10 \\
3) \(\sqrt{7^2 + 9^2} = \sqrt{49 + 81} = \sqrt{85} = 9.22 \\
4) \(\sqrt{7^2 + 6^2} = \sqrt{49 + 36} = \sqrt{85} = 9.22 \\
5) \(\sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} = 3.61 \\
6) \(\sqrt{7^2 + 4^2} = \sqrt{49 + 16} = \sqrt{65} = 8.06 \\
7) \(\sqrt{10^2 + 9^2} = \sqrt{100 + 81} = \sqrt{181} = 13.45 \\
8) \(\sqrt{1^2 + 8^2} = \sqrt{1 + 64} = \sqrt{82} = 9.06 \\
9) \(\sqrt{6^2 + 4^2} = \sqrt{36 + 16} = \sqrt{68} = 8.25 \\
10) \(\sqrt{1^2 + 5^2} = \sqrt{1 + 25} = \sqrt{26} = 5.1 \\
11) \(\sqrt{8^2 + 7^2} = \sqrt{64 + 49} = \sqrt{113} = 10.63 \\
12) \(\sqrt{5^2 + 5^2} = \sqrt{25 + 25} = \sqrt{50} = 7.07

Using Pythagorean Theorem

Find the value of 'C' round your answer to the nearest hundredth.
Using Pythagorean Theorem

Find the value of 'C' round your answer to the nearest hundredth.

1) \[36 + 81 = 117\]
\[\sqrt{117} = 10.82\]

2) \[64 + 36 = 100\]
\[\sqrt{100} = 10\]

3) \[4 + 81 = 85\]
\[\sqrt{85} = 9.22\]

4) \[49 + 36 = 85\]
\[\sqrt{85} = 9.22\]

5) \[4 + 9 = 13\]
\[\sqrt{13} = 3.61\]

6) \[49 + 16 = 65\]
\[\sqrt{65} = 8.06\]

7) \[100 + 81 = 181\]
\[\sqrt{181} = 13.45\]

8) \[1 + 81 = 82\]
\[\sqrt{82} = 9.06\]

9) \[64 + 4 = 68\]
\[\sqrt{68} = 8.25\]

10) \[1 + 25 = 26\]
\[\sqrt{26} = 5.1\]

11) \[64 + 49 = 113\]
\[\sqrt{113} = 10.63\]

12) \[25 + 25 = 50\]
\[\sqrt{50} = 7.07\]