Expressing Equations

Solve each problem.

1) Using 83 boxes of nails a carpenter was able to finish 332 bird houses. Write an equation that can be used to express the relationship between the total number of birdhouses completed (t) and the boxes of nails (b) used.

2) A chef bought 34 bags of oranges at the supermarket and it cost her $77.86. Write an equation that can be used to express the relationship between the total cost (t) and the number of bags of oranges (b) purchased.

3) It cost $258.12 for 27 pounds of beef jerky. Write an equation that can be used to express the relationship between the total cost (t) and the pounds of beef jerky (p) purchased.

4) A school had to buy 69 new science books and it ended up costing $2,423.97 total. Write an equation that can be used to express the relationship between the total cost (t) and the number of books (b) purchased.

5) A company used 546 lemons to make 78 bottles of lemonade. Write an equation that can be used to express the relationship between the total number of lemons needed (t) for each bottle of lemonade (b).

6) You can buy 8 pieces of chicken for $17.44. Write an equation that can be used to express the relationship between the total price (t) and the pieces of chicken (c) you buy.

7) The combined weight of 21 concrete blocks is 319.62 kilograms. Write an equation that can be used to express the relationship between the total weight (t) and the number of concrete blocks (b) you have.

8) Wendy traveled 16.61 kilometers in 11 minutes. Write an equation that can be used to express the relationship between the total kilometers traveled (t) and the minutes (m) it took.

9) A phone store earned $87.75 after they sold 25 phone cases. Write an equation that can be used to express the relationship between the total money earned (t) and the number of cases (c) sold.

10) At a carnival it costs $66.64 for 28 tickets. Write an equation that can be used to express the relationship between the total cost (t) and the number of tickets (n) you buy.

Answers

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

www.CommonCoreSheets.com
Solve each problem.

1) Using 83 boxes of nails a carpenter was able to finish 332 bird houses. Write an equation that can be used to express the relationship between the total number of birdhouses completed \(t \) and the boxes of nails \(b \) used.

2) A chef bought 34 bags of oranges at the supermarket and it cost her $77.86. Write an equation that can be used to express the relationship between the total cost \(t \) and the number of bags of oranges \(b \) purchased.

3) It cost $258.12 for 27 pounds of beef jerky. Write an equation that can be used to express the relationship between the total cost \(t \) and the pounds of beef jerky \(p \) purchased.

4) A school had to buy 69 new science books and it ended up costing $2,423.97 total. Write an equation that can be used to express the relationship between the total cost \(t \) and the number of books \(b \) purchased.

5) A company used 546 lemons to make 78 bottles of lemonade. Write an equation that can be used to express the relationship between the total number of lemons needed \(t \) for each bottle of lemonade \(b \).

6) You can buy 8 pieces of chicken for $17.44. Write an equation that can be used to express the relationship between the total price \(t \) and the pieces of chicken \(c \) you buy.

7) The combined weight of 21 concrete blocks is 319.62 kilograms. Write an equation that can be used to express the relationship between the total weight \(t \) and the number of concrete blocks \(b \) you have.

8) Wendy traveled 16.61 kilometers in 11 minutes. Write an equation that can be used to express the relationship between the total kilometers traveled \(t \) and the minutes \(m \) it took.

9) A phone store earned $87.75 after they sold 25 phone cases. Write an equation that can be used to express the relationship between the total money earned \(t \) and the number of cases \(c \) sold.

10) At a carnival it costs $66.64 for 28 tickets. Write an equation that can be used to express the relationship between the total cost \(t \) and the number of tickets \(n \) you buy.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>(t = b4)</td>
</tr>
<tr>
<td>2)</td>
<td>(t = b2.29)</td>
</tr>
<tr>
<td>3)</td>
<td>(t = p9.56)</td>
</tr>
<tr>
<td>4)</td>
<td>(t = b35.13)</td>
</tr>
<tr>
<td>5)</td>
<td>(t = b7)</td>
</tr>
<tr>
<td>6)</td>
<td>(t = c2.18)</td>
</tr>
<tr>
<td>7)</td>
<td>(t = b15.22)</td>
</tr>
<tr>
<td>8)</td>
<td>(t = m1.51)</td>
</tr>
<tr>
<td>9)</td>
<td>(t = c3.51)</td>
</tr>
<tr>
<td>10)</td>
<td>(t = n2.38)</td>
</tr>
</tbody>
</table>