Use the law of Cosines to find the point B's angle relative to point A.

1) \(\frac{50 + 49 + 1}{2 \times 7.07 \times 7} = 0.99\)
   \(\cos^{-1}(0.99) = 8.13°\)

2) \(\frac{82 + 1 + 81}{2 \times 9.06 \times 1} = 0.11\)
   \(\cos^{-1}(0.11) = 83.66°\)

3) \(\frac{136 + 36 + 100}{2 \times 11.66 \times 6} = 0.51\)
   \(\cos^{-1}(0.51) = 59.04°\)

4) \(\frac{200 + 100 + 100}{2 \times 14.14 \times 10} = 0.71\)
   \(\cos^{-1}(0.71) = 45°\)
Use the law of Cosines to find the point B's angle relative to point A.

1) \[ \text{AB length} = 7.07 \]
   \[ \text{AC length} = 7 \]
   \[ \text{BC length} = 1 \]
   \[ (50 + 49 + 1) \div (2 \times 7.07 \times 7) \]
   \[ 0.99 \]
   \[ \cos^{-1}(0.99) \]
   \[ 8.13° \]

2) \[ \text{AB length} = 9.06 \]
   \[ \text{AC length} = 1 \]
   \[ \text{BC length} = 9 \]
   \[ (82 + 1 + 81) \div (2 \times 9.06 \times 1) \]
   \[ 0.11 \]
   \[ \cos^{-1}(0.11) \]
   \[ 83.66° \]

3) \[ \text{AB length} = 11.66 \]
   \[ \text{AC length} = 6 \]
   \[ \text{BC length} = 10 \]
   \[ (136 + 36 + 100) \div (2 \times 11.66 \times 6) \]
   \[ 0.51 \]
   \[ \cos^{-1}(0.51) \]
   \[ 59.04° \]

4) \[ \text{AB length} = 14.14 \]
   \[ \text{AC length} = 10 \]
   \[ \text{BC length} = 10 \]
   \[ (200 + 100 + 100) \div (2 \times 14.14 \times 10) \]
   \[ 0.71 \]
   \[ \cos^{-1}(0.71) \]
   \[ 45° \]