Solve each problem.

1) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
3) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
4) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
5) A chef used $1 / 2$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
6) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
7) While exercising Ned walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
8) A small can of paint was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
9) A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?
10) An old potato outputs $1 / 2$ of a volt of electricty, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11.

Solve each problem.

1) A water hose had filled up $1 / 3$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug?
3) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
4) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
5) A chef used $1 / 2$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
6) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
7) While exercising Ned walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
8) A small can of paint was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
9) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
10) An old potato outputs $1 / 2$ of a volt of electricty, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?

Answers

1. $11 / 2$ hours
2. \qquad bags
3. $1 \frac{1}{2}$ hours
4. \qquad bottles
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
