Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Ex)

Phone Sold (x)	7	9	4	2	8
Money Earned (y)	301	387	172	86	344

Every phone sold earns _43 dollars.
1)

Enemies Destroyed (x)	2	10	9	6	7
Points Earned (y)	50	250	225	150	175

Every enemy destroyed earns \qquad points.
2)

Time in minute (x)	6	4	3	8	5
Gallons of Water Used (y)	192	128	96	256	160

Every minute \qquad gallons of water are used.
3)

Glasses of Lemonade (x)	7	3	2	4	10
Lemons Used (y)	21	9	6	12	30

For every glass of lemonade there were \qquad lemons used.

Answers
Ex. $\quad \mathrm{y}=43 \mathrm{x}$

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
4)

Pounds of Beef Jerky (x)	7	6	10	9	3
Price in dollars (y)	77	66	110	99	33

For every pound of beef jerky it cost \qquad dollars.
5)

Tickets Sold (x)	10	6	7	9	4
Money Earned (y)	100	60	70	90	40

Every ticket sold \qquad dollars are earned.
6)

Pieces of Chicken (x)	4	7	8	2	3
Price in dollars (\mathbf{y})	8	14	16	4	6

For each piece of chicken it costs \qquad dollars.
7)

Boxes of Candy (x)	3	10	9	5	6
Pieces of Candy (y)	51	170	153	85	102

For every box of candy you get \qquad pieces.
8)

Cans of Paint (x)	4	5	10	7	8
Bird Houses Painted (y)	16	20	40	28	32

For every can of paint you could paint \qquad bird houses.

Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathrm{kx}$

Ex)

Phone Sold (x)	7	9	4	2	8
Money Earned (y)	301	387	172	86	344

Every phone sold earns _43_dollars.
1)

Enemies Destroyed (x)	2	10	9	6	7
Points Earned (y)	50	250	225	150	175

Every enemy destroyed earns \qquad points.
2)

Time in minute (x)	6	4	3	8	5
Gallons of Water Used (y)	192	128	96	256	160

Every minute $\quad 32$ gallons of water are used.
3)

Glasses of Lemonade (x)	7	3	2	4	10
Lemons Used (y)	21	9	6	12	30

For every glass of lemonade there were $\quad 3 \quad$ lemons used.
4)

Pounds of Beef Jerky (x)	7	6	10	9	3
Price in dollars (y)	77	66	110	99	33

For every pound of beef jerky it cost $\quad 11 \quad$ dollars.
5)

Tickets Sold (x)	10	6	7	9	4
Money Earned (y)	100	60	70	90	40

Every ticket sold _10_ dollars are earned.
6)

Pieces of Chicken (x)	4	7	8	2	3
Price in dollars (\mathbf{y})	8	14	16	4	6

For each piece of chicken it costs _2_dollars.
7)

Boxes of Candy (x)	3	10	9	5	6
Pieces of Candy (y)	51	170	153	85	102

For every box of candy you get _17_ pieces.
8)

Cans of Paint (x)	4	5	10	7	8
Bird Houses Painted (y)	16	20	40	28	32

For every can of paint you could paint __ 4 bird houses.
\qquad

Answers

Ex. $\quad \mathbf{y}=43 \mathrm{x}$

1. $\mathbf{y}=25 \mathrm{x}$
2. $\mathbf{y}=\mathbf{3 2 x}$
3. $\quad \mathbf{y}=3 \mathrm{x}$
4.

$$
\mathrm{y}=11 \mathrm{x}
$$

5. $\mathbf{y}=10 \mathrm{x}$
6. \qquad
7. $\quad \mathbf{y}=17 x$
8. $\quad \mathbf{y}=4 \mathrm{x}$ -
