

Solve each problem.

- A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
- 4) A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
- A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{3}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
- A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
- 7) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
- While exercising Tom walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?
- A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
- 10) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. _____

2.

3. _____

4. _____

5. _____

6.

7. _____

8. _____

9. _____

10. _____

Solve each problem.

- A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
- A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
- A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{3}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
- A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
- A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
- While exercising Tom walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?
- A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
- 10) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

- 3 cans
- $1\frac{1}{2}$ hours
- 3 potatoes
- $1\frac{1}{2}$ seconds
- $1\frac{1}{2}$ boxes
- 6. **3 bottles**
- 7. **3 bags**
- $1\frac{1}{2}$ miles
- 9. **3 bags**
- 1^{1}_{2} hours