Solve each problem.

1) A small can of paint was $1 / 2$ of a liter. That was enough to fill $1 / 3$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
2) A water hose had filled up $\frac{1}{3}$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
3) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
4) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
5) A carpenter used $1 / 2$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
6) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
7) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
8) While exercising Tom walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
9) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
10) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A small can of paint was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
2) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
3) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
4) A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?
5) A carpenter used $1 / 2$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
6) A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
7) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
8) While exercising Tom walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
9) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
10) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
1. \qquad
2. \qquad hours

3 potatoes
\qquad
4. \qquad seconds
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
$1 / 2$ hours
10. \qquad

