Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathrm{kx}$

Ex)

Pieces of Chicken (x)	9	7	5	8	10
Price in dollars (y)	9	7	5	8	10

For each piece of chicken it costs \qquad dollars.
1)

Time in minute (x)	10	4	5	9	8
Gallons of Water Used (y)	300	120	150	270	240

Every minute \qquad gallons of water are used.
2)

Time in minute (x)	5	6	10	4	3
Distance traveled in meters (y)	125	150	250	100	75

Every minute \qquad meters are travelled.
3)

Concrete Blocks (x)	10	8	5	3	7
weight in kilograms (y)	100	80	50	30	70

Every concrete block weighs \qquad kilograms.
4)

Boxes of Candy (x)	10	9	6	3	7
Pieces of Candy (y)	190	171	114	57	133

For every box of candy you get \qquad pieces.
5)

Glasses of Lemonade (x)	8	3	6	4	2
Lemons Used (y)	24	9	18	12	6

For every glass of lemonade there were \qquad lemons used.
6)

Enemies Destroyed (x)	3	7	8	9	6
Points Earned (y)	93	217	248	279	186

Every enemy destroyed earns \qquad points.
7)

Pounds of Beef Jerky (x)	2	5	3	9	7
Price in dollars (y)	22	55	33	99	77

For every pound of beef jerky it cost \qquad dollars.
8)

Phone Sold (x)	3	4	10	7	5
Money Earned (y)	138	184	460	322	230

Every phone sold earns \qquad dollars.

Answers

Ex. \qquad $y=1 x$

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9.

\qquad

Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Ex)

Pieces of Chicken (x)	9	7	5	8	10
Price in dollars (y)	9	7	5	8	10

For each piece of chicken it costs \qquad dollars.
1)

Time in minute (x)	10	4	5	9	8
Gallons of Water Used (y)	300	120	150	270	240

Every minute _ 30 gallons of water are used.
2)

Time in minute (x)	5	6	10	4	3
Distance traveled in meters (y)	125	150	250	100	75

Every minute $\quad 25$ meters are travelled.
3)

Concrete Blocks (x)	10	8	5	3	7
weight in kilograms (y)	100	80	50	30	70

Every concrete block weighs _10_ kilograms.
4)

Boxes of Candy (x)	10	9	6	3	7
Pieces of Candy (y)	190	171	114	57	133

For every box of candy you get __19_ pieces.
5)

Glasses of Lemonade (x)	8	3	6	4	2
Lemons Used (y)	24	9	18	12	6

For every glass of lemonade there were _3_ lemons used.
6)

Enemies Destroyed (x)	3	7	8	9	6
Points Earned (y)	93	217	248	279	186

Every enemy destroyed earns 31 points.
7)

Pounds of Beef Jerky (x)	2	5	3	9	7
Price in dollars (y)	22	55	33	99	77

For every pound of beef jerky it cost _11_ dollars.
8)

Phone Sold (x)	3	4	10	7	5
Money Earned (y)	138	184	460	322	230

Every phone sold earns _ 46 dollars.
6)
)

Answers

Ex. \qquad $y=1 x$

1. $\mathbf{y}=30 \mathrm{x}$
2. $\mathbf{y}=\mathbf{2 5 x}$
3. $\mathbf{y}=10 \mathrm{x}$
4.

$$
\mathrm{y}=19 \mathrm{x}
$$

5. $\quad \mathbf{y}=3 \mathbf{x}$
6. $\mathbf{y}=31 \mathrm{x}$
7. $\mathbf{y}=11 \mathbf{x}$
8. $\mathbf{y}=46 \mathrm{x}$
