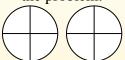
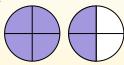


$$^{2}/_{4} \times 3 =$$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


$\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

1. _____

2. _____

3. _____

4. _____

5. _____

6. _____

7. _____

8. _____

9. _____

10. _____

11. _____

1)
$$\frac{4}{5} \times 4 =$$

2)
$$\frac{1}{10} \times 3 =$$

3)
$$\frac{3}{4} \times 5 =$$

4)
$$\frac{1}{3} \times 2 =$$

5)
$$\frac{2}{5} \times 5 =$$

$$6) \quad \frac{4}{6} \times 3 =$$

7)
$$\frac{4}{12} \times 3 =$$

8)
$$\frac{3}{5} \times 2 =$$

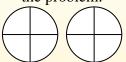
9)
$$\frac{10}{12} \times 2 =$$

$$\frac{4}{5} \times 6 =$$

11)
$$\frac{2}{5} \times 4 =$$

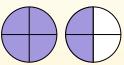
12)
$$\frac{3}{6} \times 7 =$$

 $^{2}/_{4} \times 3 =$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

1.
$$3\frac{1}{5}$$

$$\frac{3}{10}$$

$$3\frac{3}{4}$$

$$\frac{2^{0}}{6}$$

7.
$$1\frac{1}{12}$$

$$\frac{1}{5}$$

$$1^{8}/_{12}$$

$$4\frac{4}{5}$$

$$1\frac{3}{5}$$

$$\frac{3}{6}$$

1) 4			
$\frac{}{5}$ × 4 =			

$$\frac{1}{10} \times 3 = 2$$

3)
$$\frac{3}{4} \times 5 =$$

4)
$$\frac{1}{3} \times 2 =$$

5)
$$\frac{2}{5} \times 5 =$$

$$6) \quad \frac{4}{6} \times 3 =$$

7)
$$\frac{4}{12} \times 3 =$$

8)
$$\frac{3}{5} \times 2 =$$

9)
$$\frac{10}{12} \times 2 =$$

10)
$$\frac{4}{5} \times 6 =$$

11)
$$\frac{2}{5} \times 4 =$$

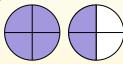
12)
$$\frac{3}{6} \times 7 =$$

$$^{2}/_{4} \times 3 =$$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = \frac{1}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

1. _____

Answers

2

3. _____

4. _____

5. _____

6. _____

7. _____

8.

9. _____

10. _____

11. _____

1) 1		\bigcap		\bigcap					
$\frac{}{4} \times 2 =$	\bigcup	\mathcal{I}	\bigcup						

2)
$$\frac{1}{5} \times 5 =$$

3)
$$\frac{1}{8} \times 5 =$$

4)
$$\frac{5}{12} \times 4 =$$

5)
$$\frac{7}{12} \times 3 =$$

6)
$$\frac{1}{3} \times 3 =$$

7)
$$\frac{2}{3} \times 6 = \bigcirc$$

8)
$$\frac{2}{3} \times 4 = \bigcirc$$

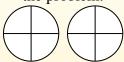
9)
$$\frac{2}{12} \times 5 =$$

$$\frac{3}{5} \times 7 =$$

11)
$$\frac{6}{8} \times 5 =$$

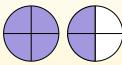
12)
$$\frac{6}{10} \times 3 =$$

$^{2}/_{4} \times 3 =$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


$^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

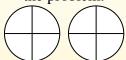
After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

- $\frac{1}{5}$
- $\frac{5}{8}$
- $_{4.} \quad 1^{8}/_{12}$
- $_{5.}$ $1^{9}/_{12}$
- $\frac{1}{3}$
- 7. $4\frac{0}{3}$
- $\frac{2^{2}}{3}$
- $\frac{10}{12}$
- $4^{1}/_{5}$
- 11. _____**3¹/₈**___
- $_{2.}$ $1\frac{1}{10}$

$1) \frac{1}{4} \times 2 =$			\bigcap					
$\frac{1}{4} \times 2 = 1$	\bigcup	\bigcup		\bigcup	\bigcup	\bigcup	\bigcup	\supset

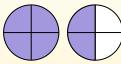
- 2) $\frac{1}{5} \times 5 =$
- 3) $\frac{1}{8} \times 5 =$
- 4) $\frac{5}{12} \times 4 =$
- 5) $\frac{7}{12} \times 3 =$
- 6) $\frac{1}{3} \times 3 =$
- 7) $\frac{2}{3} \times 6 =$
- 8) $\frac{2}{3} \times 4 =$
- 9) $\frac{2}{12} \times 5 =$
- 10) $\frac{3}{5} \times 7 =$
- 11) $\frac{6}{8} \times 5 =$
- $\frac{6}{10} \times 3 = 2$

$$^{2}/_{4} \times 3 =$$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

<u>Answers</u>

1. _____

2.

3. _____

4. _____

5. _____

6. _____

7. _____

8. _____

9. _____

10. _____

11. _____

1)
$$\frac{3}{4} \times 4 =$$

2)
$$\frac{1}{5} \times 3 =$$

3)
$$\frac{2}{8} \times 6 =$$

4)
$$\frac{2}{3} \times 4 = \bigcirc$$

5)
$$\frac{1}{3} \times 6 = \bigcirc$$

6)
$$\frac{1}{5} \times 2 =$$

7)
$$\frac{1}{3} \times 4 =$$

8)
$$\frac{1}{3} \times 3 = \bigcirc$$

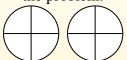
9)
$$\frac{4}{8} \times 6 =$$

$$\frac{4}{10} \times 6 =$$

11)
$$\frac{2}{10} \times 6 =$$

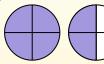
12)
$$\frac{2}{4} \times 3 =$$

 $^{2}/_{4} \times 3 =$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

5.
$$\frac{2^{0}/_{3}}{}$$

7.
$$\frac{1\frac{1}{3}}{}$$

$$\frac{1}{3}$$

9.
$$\frac{3\frac{1}{8}}{8}$$

$$\frac{2^4}{10}$$

$$1^{2}/_{10}$$

$$\frac{1}{4}$$

1) 3									
$\frac{}{4} \times 4 =$	\bigcup		\bigcup	\bigcup	\bigcup'	\supset	\bigcup	\supset	\bigcup

2)
$$\frac{1}{5} \times 3 =$$

3)
$$\frac{2}{8} \times 6 =$$

4)
$$\frac{2}{3} \times 4 =$$

5)
$$\frac{1}{3} \times 6 =$$

$$6) \quad \frac{1}{5} \times 2 = 2$$

7)
$$\frac{1}{3} \times 4 =$$

8)
$$\frac{1}{3} \times 3 =$$

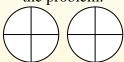
9)
$$\frac{4}{8} \times 6 =$$

$$\frac{4}{10} \times 6 =$$

11)
$$\frac{2}{10} \times 6 =$$

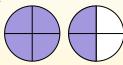
12)
$$\frac{2}{4} \times 3 =$$

$$^{2}/_{4} \times 3 =$$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


$^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

2. _____

3. _____

4. _____

5. _____

6. _____

7. _____

8.

9. _____

10. _____

11. _____

1)
$$\frac{9}{12} \times 7 =$$

2)
$$\frac{2}{5} \times 6 =$$

3)
$$\frac{5}{8} \times 4 =$$

4)
$$\frac{3}{12} \times 4 =$$

5)
$$\frac{2}{6} \times 4 =$$

6)
$$\frac{3}{8} \times 3 =$$

7)
$$\frac{3}{12} \times 3 =$$

8)
$$\frac{6}{12} \times 4 =$$

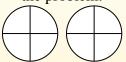
9)
$$\frac{5}{6} \times 6 =$$

10)
$$\frac{2}{10} \times 3 =$$

11)
$$\frac{7}{12} \times 6 =$$

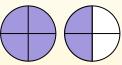
12)
$$\frac{4}{5} \times 2 =$$

 $^{2}/_{4} \times 3 =$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

$$\frac{1}{12}$$

$$\frac{1\frac{7}{6}}{}$$

$$\frac{1\frac{1}{8}}{}$$

$$\frac{2}{12}$$

$$\frac{5}{6}$$

$$3\frac{1}{12}$$

1)
$$\frac{9}{12} \times 7 =$$

2)
$$\frac{2}{5} \times 6 =$$

3)
$$\frac{5}{8} \times 4 =$$

4)
$$\frac{3}{12} \times 4 =$$

5)
$$\frac{2}{6} \times 4 =$$

6)
$$\frac{3}{8} \times 3 =$$

7)
$$\frac{3}{12} \times 3 =$$

8)
$$\frac{6}{12} \times 4 =$$

9)
$$\frac{5}{6} \times 6 =$$

$$\frac{2}{10} \times 3 = 2$$

11)
$$\frac{7}{12} \times 6 =$$

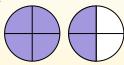
12)
$$\frac{4}{5} \times 2 = 2$$

$$^{2}/_{4} \times 3 =$$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

2. _____

Answers

3. _____

4. _____

5. _____

6. _____

7. _____

8. _____

9. _____

10. _____

11. _____

1)	$\frac{3}{12} \times 4 =$				
	$\frac{1}{12} \times 4 =$				

2)
$$\frac{2}{3} \times 3 =$$

3)
$$\frac{1}{6} \times 5 =$$

4)
$$\frac{7}{8} \times 3 =$$

5)
$$\frac{1}{5} \times 2 =$$

6)
$$\frac{2}{6} \times 3 =$$

7)
$$\frac{3}{5} \times 3 =$$

8)
$$\frac{6}{10} \times 7 =$$

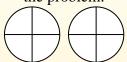
9)
$$\frac{5}{8} \times 6 =$$

$$\frac{1}{12} \times 5 =$$

11)
$$\frac{2}{3} \times 2 = \bigcirc$$

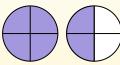
12)
$$\frac{10}{12} \times 3 =$$

 $^{2}/_{4} \times 3 =$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

$$1. \quad 1^{0}/_{12}$$

$$\frac{2}{3}$$

4.
$$2^{\frac{5}{8}}$$

$$\frac{1}{6}$$

$$_{7.} \quad 1\frac{4}{5}$$

$$4^{2}/_{10}$$

$$_{9.}$$
 $3\frac{6}{8}$

$$1\frac{1}{3}$$

1)	$\frac{3}{12} \times 4 =$				
	$\frac{1}{12} \times 4 =$				

2)
$$\frac{2}{3} \times 3 =$$

3)
$$\frac{1}{6} \times 5 =$$

4)
$$\frac{7}{8} \times 3 =$$

5)
$$\frac{1}{5} \times 2 =$$

6)
$$\frac{2}{6} \times 3 =$$

7)
$$\frac{3}{5} \times 3 =$$

8)
$$\frac{6}{10} \times 7 =$$

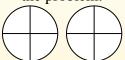
9)
$$\frac{5}{8} \times 6 =$$

$$\frac{1}{12} \times 5 =$$

11)
$$\frac{2}{3} \times 2 =$$

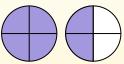
12)
$$\frac{10}{12} \times 3 =$$

$$^{2}/_{4} \times 3 =$$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

4

Answers

5. _____

6.

7. _____

10

11.

1)
$$\frac{5}{10} \times 5 =$$

2)
$$\frac{1}{5} \times 6 =$$

3)
$$\frac{4}{8} \times 2 =$$

4)
$$\frac{2}{6} \times 4 =$$

5)
$$\frac{2}{5} \times 6 =$$

$$6) \quad \frac{5}{12} \times 3 =$$

7)
$$\frac{2}{3} \times 4 =$$

8)
$$\frac{6}{8} \times 6 =$$

9)
$$\frac{3}{8} \times 2 =$$

$$\frac{3}{4} \times 3 = \boxed{ }$$

11)
$$\frac{2}{4} \times 5 =$$

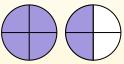
12)
$$\frac{3}{10} \times 5 =$$

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

$$1\frac{0}{8}$$

$$\frac{1^{2}}{6}$$

$$\frac{2^{2}}{5}$$

$$_{6.}$$
 $1\frac{3}{12}$

$$\frac{2^2}{3}$$

$$\frac{4^{4}}{8}$$

$$\frac{2^{1}}{4}$$

$$\frac{2^{2}}{4}$$

$$_{2.}$$
 $1\frac{1}{10}$

1)	5 _				
	$\overline{10} \times 5 =$				

2)
$$\frac{1}{5} \times 6 =$$

3)
$$\frac{4}{8} \times 2 =$$

4)
$$\frac{2}{6} \times 4 =$$

5)
$$\frac{2}{5} \times 6 =$$

6)
$$\frac{5}{12} \times 3 =$$

7)
$$\frac{2}{3} \times 4 =$$

8)
$$\frac{6}{8} \times 6 =$$

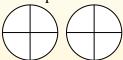
9)
$$\frac{3}{8} \times 2 =$$

10)
$$\frac{3}{4} \times 3 =$$

11)
$$\frac{2}{4} \times 5 =$$

12)
$$\frac{3}{10} \times 5 =$$

$$^{2}/_{4} \times 3 =$$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


$\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

1.

1)
$$\frac{5}{12} \times 3 =$$

2)
$$\frac{1}{4} \times 3 =$$

3)
$$\frac{2}{5} \times 6 =$$

4)
$$\frac{1}{4} \times 7 =$$

5)
$$\frac{3}{6} \times 6 =$$

$$6) \quad \frac{9}{10} \times 5 =$$

7)
$$\frac{4}{12} \times 4 =$$

8)
$$\frac{8}{10} \times 6 =$$

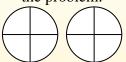
9)
$$\frac{1}{6} \times 7 =$$

10)
$$\frac{3}{12} \times 6 =$$

11)
$$\frac{1}{8} \times 3 =$$

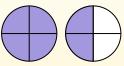
12)
$$\frac{2}{3} \times 7 = \bigcirc$$

 $^{2}/_{4} \times 3 =$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

$1^{3}/_{12}$

$$2^{2}/_{5}$$

$$\frac{1}{4}$$

$$\frac{3}{6}$$

$$\frac{4^{5}}{10}$$

$$_{7.}$$
 $1\frac{4}{12}$

$$\frac{4^{8}}{10}$$

$$1\frac{1}{6}$$

$$_{0.}$$
 $1\frac{6}{12}$

2.
$$\frac{4^{2}/_{3}}{}$$

$\frac{5}{12} \times 3 =$				
$\frac{12}{12} \times 3 =$				

2)
$$\frac{1}{4} \times 3 =$$

3)
$$\frac{2}{5} \times 6 =$$

4)
$$\frac{1}{4} \times 7 =$$

5)
$$\frac{3}{6} \times 6 =$$

6)
$$\frac{9}{10} \times 5 =$$

7)
$$\frac{4}{12} \times 4 =$$

8)
$$\frac{8}{10} \times 6 =$$

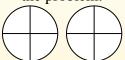
9)
$$\frac{1}{6} \times 7 =$$

10)
$$\frac{3}{12} \times 6 =$$

11)
$$\frac{1}{8} \times 3 =$$

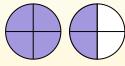
12)
$$\frac{2}{3} \times 7 =$$

$$^{2}/_{4} \times 3 =$$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

1.

2. _____

3. _____

4. _____

5. _____

6. _____

7. _____

8.

9. _____

10. _____

11.

1)	1		
	$\overline{3} \times 6 = $		

2)
$$\frac{2}{3} \times 6 = \bigcirc$$

3)
$$\frac{3}{4} \times 2 =$$

4)
$$\frac{4}{6} \times 2 =$$

5)
$$\frac{8}{12} \times 4 =$$

$$6) \quad \frac{8}{10} \times 6 =$$

7)
$$\frac{4}{6} \times 6 =$$

8)
$$\frac{2}{12} \times 7 =$$

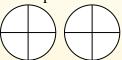
9)
$$\frac{2}{5} \times 6 =$$

$$\frac{3}{5} \times 5 =$$

11)
$$\frac{1}{5} \times 3 =$$

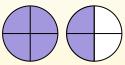
12)
$$\frac{1}{4} \times 7 = \bigcirc$$

$$^{2}/_{4} \times 3 =$$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


$^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

$$\frac{2^{8}}{12}$$

6.
$$4^{8}/_{10}$$

7.
$$\frac{4\sqrt{6}}{6}$$

$$\frac{1^{2}}{12}$$

$$\frac{2^{2}}{5}$$

$$3\frac{3}{5}$$

$$\frac{3}{5}$$

1)
$$\frac{1}{3} \times 6 =$$

2)
$$\frac{2}{3} \times 6 =$$

3)
$$\frac{3}{4} \times 2 =$$

4)
$$\frac{4}{6} \times 2 =$$

5)
$$\frac{8}{12} \times 4 =$$

$$6) \quad \frac{8}{10} \times 6 =$$

7)
$$\frac{4}{6} \times 6 =$$

8)
$$\frac{2}{12} \times 7 =$$

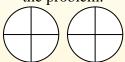
9)
$$\frac{2}{5} \times 6 =$$

10)
$$\frac{3}{5} \times 5 =$$

11)
$$\frac{1}{5} \times 3 =$$

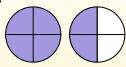
12)
$$\frac{1}{4} \times 7 =$$

$$^{2}/_{4} \times 3 =$$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

4

5. _____

6. _____

7. _____

· _____

10. _____

11. _____

1)	$\frac{1}{4} \times 7 =$		\bigcap								
	$\frac{1}{4}$ × 7 =	\bigcup		\bigcup		\bigcup	\bigcup	\bigcup	\bigcup	\bigcup	\supset

2)
$$\frac{2}{5} \times 4 =$$

3)
$$\frac{2}{5} \times 2 =$$

4)
$$\frac{9}{12} \times 7 =$$

5)
$$\frac{2}{3} \times 5 =$$

$$6) \quad \frac{3}{4} \times 3 =$$

7)
$$\frac{3}{6} \times 5 =$$

8)
$$\frac{2}{6} \times 2 =$$

9)
$$\frac{4}{6} \times 7 =$$

10)
$$\frac{10}{12} \times 2 =$$

11)
$$\frac{5}{8} \times 6 =$$

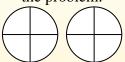
12)
$$\frac{9}{12} \times 4 =$$

Name:

Answer Key

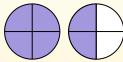
Use the visual model to solve each problem.

 $^{2}/_{4} \times 3 =$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

$$\frac{1\frac{3}{5}}{}$$

4.
$$5\frac{3}{12}$$

$$\frac{3^{1}}{3}$$

$$\frac{2^{1}}{4}$$

$$\frac{2^{3}}{6}$$

8.
$$\frac{4}{6}$$

9.
$$4\frac{4}{6}$$

$$1^{8}/_{12}$$

$$_{1}$$
 $3\frac{6}{8}$

$$\frac{3}{12}$$

1)
$$\frac{1}{4} \times 7 =$$

2)
$$\frac{2}{5} \times 4 =$$

3)
$$\frac{2}{5} \times 2 =$$

4)
$$\frac{9}{12} \times 7 =$$

5)
$$\frac{2}{3} \times 5 =$$

$$6) \quad \frac{3}{4} \times 3 =$$

7)
$$\frac{3}{6} \times 5 =$$

8)
$$\frac{2}{6} \times 2 =$$

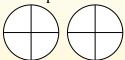
9)
$$\frac{4}{6} \times 7 =$$

10)
$$\frac{10}{12} \times 2 =$$

11)
$$\frac{5}{8} \times 6 =$$

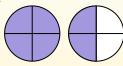
12)
$$\frac{9}{12} \times 4 =$$

$$^{2}/_{4} \times 3 =$$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


$^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

1. _____

2. _____

3. _____

4. _____

5. _____

6. _____

7. _____

8.

9. _____

10. _____

11. _____

1)	$\frac{8}{10} \times 4 =$				
	$\overline{10} \times 4 =$				

2)
$$\frac{4}{5} \times 5 =$$

3)
$$\frac{1}{10} \times 7 =$$

4)
$$\frac{7}{12} \times 6 =$$

5)
$$\frac{2}{3} \times 5 =$$

$$6) \quad \frac{2}{5} \times 6 =$$

7)
$$\frac{1}{8} \times 5 =$$

8)
$$\frac{8}{12} \times 6 =$$

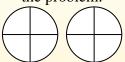
9)
$$\frac{3}{4} \times 4 =$$

10)
$$\frac{1}{3} \times 3 =$$

11)
$$\frac{2}{3} \times 4 = \bigcirc$$

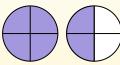
12)
$$\frac{2}{8} \times 6 =$$

 $^{2}/_{4} \times 3 =$


To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$


 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

1.
$$3^{2}/_{10}$$

2.
$$\frac{4^{0}/_{5}}{}$$

$$\frac{7}{10}$$

$$_{4.}$$
 $3\frac{6}{12}$

$$\frac{3^{1}}{3}$$

$$\frac{2^2}{5}$$

$$\frac{4}{12}$$

$$\frac{3}{4}$$

$$1\frac{0}{3}$$

$$\frac{2^{2}}{3}$$

$$12.$$
 $1\frac{4}{8}$

1)
$$\frac{8}{10} \times 4 =$$

2)
$$\frac{4}{5} \times 5 =$$

3)
$$\frac{1}{10} \times 7 =$$

4)
$$\frac{7}{12} \times 6 =$$

5)
$$\frac{2}{3} \times 5 =$$

6)
$$\frac{2}{5} \times 6 =$$

7)
$$\frac{1}{8} \times 5 =$$

8)
$$\frac{8}{12} \times 6 =$$

9)
$$\frac{3}{4} \times 4 =$$

10)
$$\frac{1}{3} \times 3 =$$

11)
$$\frac{2}{3} \times 4 =$$

12)
$$\frac{2}{8} \times 6 =$$

Math