Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Ex)

Chocolate Bars (x)	10	8	3	5	7
Calories (y)	3,760	3,008	1,128	1,880	2,632

Every chocolate bar has 376 calories.
1)

Pounds of Beef Jerky (x)	6	10	7	3	4
Price in dollars (y)	78	130	91	39	52

For every pound of beef jerky it cost \qquad dollars.
2)

Glasses of Lemonade (x)	3	8	4	7	9
Lemons Used (y)	15	40	20	35	45

For every glass of lemonade there were \qquad lemons used.
3)

Pieces of Chicken (x)	4	2	7	5	10
Price in dollars (\mathbf{y})	8	4	14	10	20

For each piece of chicken it costs \qquad dollars.
4)

Phone Sold (x)	9	3	7	8	10
Money Earned (y)	414	138	322	368	460

Every phone sold earns \qquad dollars.
5)

Tickets Sold (x)	3	2	4	5	6
Money Earned (y)	33	22	44	55	66

Every ticket sold \qquad dollars are earned.
6)

Votes for Robin (x)	3	5	8	9	6
Votes for Oliver (y)	81	135	216	243	162

For Every vote for Robin there were \qquad votes for Oliver.
7)

Concrete Blocks (x)	2	3	5	7	6
weight in kilograms (y)	10	15	25	35	30

Every concrete block weighs \qquad kilograms.
8)

Lawns Mowed (x)	8	10	4	6	9
Dollars Earned (y)	264	330	132	198	297

For every lawn mowed \qquad dollars were earned.

Ex. $\quad \mathbf{y}=\mathbf{3 7 6 x}$

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
-2

Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathrm{kx}$

Ex)

Chocolate Bars (x)	10	8	3	5	7
Calories (y)	3,760	3,008	1,128	1,880	2,632

Every chocolate bar has 376 calories.
1)

Pounds of Beef Jerky (x)	6	10	7	3	4
Price in dollars (y)	78	130	91	39	52

For every pound of beef jerky it cost 13 dollars.
2)

Glasses of Lemonade (x)	3	8	4	7	9
Lemons Used (y)	15	40	20	35	45

For every glass of lemonade there were $\quad 5$ lemons used.
3)

Pieces of Chicken (x)	4	2	7	5	10
Price in dollars (\mathbf{y})	8	4	14	10	20

For each piece of chicken it costs \qquad 2 dollars.
4)

Phone Sold (x)	9	3	7	8	10
Money Earned (y)	414	138	322	368	460

Every phone sold earns \qquad 46 dollars.
5)

Tickets Sold (x)	3	2	4	5	6
Money Earned (y)	33	22	44	55	66

Every ticket sold _11_ dollars are earned.
6)

Votes for Robin (x)	3	5	8	9	6
Votes for Oliver (y)	81	135	216	243	162

For Every vote for Robin there were _ 27 votes for Oliver.
7)

Concrete Blocks (x)	2	3	5	7	6
weight in kilograms (y)	10	15	25	35	30

Every concrete block weighs _ 5 kilograms.
8)

Lawns Mowed (x)	8	10	4	6	9
Dollars Earned (y)	264	330	132	198	297

For every lawn mowed \qquad 33 dollars were earned.

Ex. $\quad \mathbf{y}=376 x$

1. $\mathbf{y}=13 \mathrm{x}$
2.

$$
y=5 x
$$

3. \qquad
4.

$$
y=46 x
$$

5. $\quad \mathbf{y}=11 \mathbf{x}$
6. $\quad \mathbf{y}=27 \mathrm{x}$
7. $\quad \mathbf{y}=5 \mathrm{x}$
8. $\quad \mathbf{y}=33 \mathbf{x}$

$$
\square
$$ -

